THzürich

Playing Dominoes Is Hard, Except by Yourself

Erik D. Demaine, Fermi Ma, Erik Waingarten Presentation by Chio Ge, Tassilo Schwarz

Why should I care?

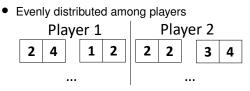
- Winning strategy: complexity
- Useful for reductions
- Reduction from instances of job scheduling problem¹

¹two-machine no-idle/no-wait shop scheduling [BDCST19]

• Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, \dots, 7\}\}$

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\}\}$
- Evenly distributed among players

• Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$



- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Domino set: $\{(a, b) | a \leq b \land a, b \in \{1, ..., 7\} \}$
- Evenly distributed among players
 Player 1
 Player 2
 2 4 1 2
 2 2 3 4
 ...
- Players take turn building a valid chain

- Winner:
 - Player, first out of dominoes
 - Opponent stuck

Domino Game: Generalized Version

Instance of Domino Game:

- multiset of *n* dominoes
- arbitrary distribution among players

Winner:

- · Rid of all dominoes
- Opponent stuck

Domino Game: Generalized Version

Instance of Domino Game:

- multiset of *n* dominoes
- arbitrary distribution among players

Winner:

- · Rid of all dominoes
- Opponent stuck

Goal

Complexity to decide: Given a Dominoes instance, does a winning strategy exist?

Variants of Dominoes

Cooperative Dominoes

p-COOP-DOM = { (Instance of Dominoes) |All players can help P1 win the game}

- $p \ge 1$ players
- Can all players help Player 1 win the game?

Variants of Dominoes

Cooperative Dominoes

p-COOP-DOM = { (Instance of Dominoes) |All players can help P1 win the game}

- $p \ge 1$ players
- Can all players help Player 1 win the game?

Competitive Dominoes

p-COMP-DOM = { (Instance of Dominoes) |P1 has a winning strategy}

- $p \ge 2$ players
- Does player 1 have a winning strategy?

Variants of Dominoes

Cooperative Dominoes

p-COOP-DOM = { (Instance of Dominoes) |All players can help P1 win the game}

- $p \ge 1$ players
- Can all players help Player 1 win the game?

Competitive Dominoes

p-COMP-DOM = { (Instance of Dominoes) |P1 has a winning strategy}

- $p \ge 2$ players
- Does player 1 have a winning strategy?

Perfect information: all dominoes visible

Player 1 starts.

We will show

- 1. One-player dominoes is in P
- 2. Two-player cooperative dominoes is NP-complete
- 3. Two-player competitive dominoes is PSPACE-complete
- 4. (p-player cooperative dominoes is NP-complete)
- 5. (p-player competitive dominoes is PSPACE-complete)

Theorem

One-player dominoes $\in P$

Proof.

One-player dominoes \leq_p Eulerian Path¹

Numbers on dominoes \rightarrow Vertices

 $\text{Dominoes} \to \text{Edges}$

Eulerian path¹ exists in G \iff valid domino chain exists

¹allowing for revisiting vertices

Cooperative Dominoes

2 players; can all players help Player 1 win the game?

Theorem

2-player cooperative dominoes (2P-COOP-DOM) is NP-complete.

Proof.

1) 2P-COOP-DOM $\in NP$:

Given a move sequence, verify whether Player 1 wins.

2) 2P-COOP-DOM is NP-hard:

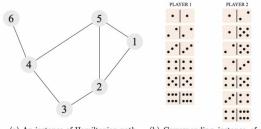
Reduction from Hamilton Path Problem (HP)

$HP \leq_p 2P$ -COOP-DOM

Given (connected) graph G = (V, E), construct dominoes instance:

$$T_1 = \{\{i, i\} | i \in V\} \text{ and } T_2 = \{\{i, j\} | (i, j) \in E\} \cup \{\{*, *\}\}\}$$

ETH zürich



(a) An instance of Hamiltonian path (b) Corresponding instance of 2player cooperative dominoes

Fig. 1. Reduction from Hamiltonian path to 2-player cooperative dominoes

Fig. 2. Hamiltonian path represented as domino chain

Edge Case

G is connected so there are at least |V| - 1 edges \Rightarrow Player 2 cannot get rid of his dominoes before Player 1 with dummy domino

Competitive Dominoes

2 players; does player 1 have a winning strategy?

Theorem

2-player competitive dominoes (2P-COMP-DOM) is in PSPACE.

Proof.

Convert into instance of the Formula Game Problem

Formula Game

Given quantified Boolean formula in prenex normal form

$$\phi = \exists x_1 \forall x_2 \exists x_3 \forall x_4 \dots Q x_k[\psi]$$

and two Players E, A

Definition (Formula Game (associated with ϕ)) Player E (\exists) and Player A (\forall) take turns selecting variables $x_1, ..., x_k$ If ψ evaluates to *TRUE*, E wins. Else, A Wins.

Formula Game

 $\label{eq:FORMULA-GAME} FORMULA-GAME = \{\langle \phi \rangle | \text{Player E has a winning strategy in the} \\ \text{formula game associated with } \phi \}$

Example

$$\exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\bar{x_2} \lor \bar{x_3})]$$

Player E has a winning strategy: Set $x_1 = 1$ and $x_3 = \neg x_2$

DINFK

Formula Game

Theorem

FORMULA-GAME is in PSPACE

Proof (Sketch).

Recursively check for all variables if subformula has a winning strategy by trying out all assignments. Only needs to save one possible assignment at a time.¹ \Box

 $^{^{1} \}in \mathsf{PSPACE}$ proven by Sipser via QBF [Sip97]

2P-COMP-DOM \leq_{p} FORMULA-GAME

Every instance of dominoes can be transformed into a formula game problem in PSPACE.

Define variables $X_{i,j,k,l}$ representing *i*-th domino, placed in *j*-th direction, at *k*-th position at the *l*-th turn ($\mathcal{O}(n^3)$ many variables).

Generate ψ = (F₁ ∧ F₂ ∧ F₃) ∨ ¬F₄ which is satisfied iff Player 1 wins a valid game OR if Player 2 makes a wrong move.

F1: Satisfied iff Player 1 moves correctly.

F2: Satisfied iff domino chain is correct.

F3: Satisfied iff Player 1 won.

F4: Satisfied iff Player 2 moves correctly.

• Generate
$$\phi = \exists X_{,,,,1} \forall X_{,,,2} \dots QX_{,,,n}[\psi]$$

Formula Game: example

- Г	
1	
- 1	
- 1	
1	
1	
1	
1	
1	
1	
- 1	
- 1	
- 1	
- 1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

Polynomial Space?

- All constraints/checks in ϕ consist of one variable or a pair of variables
- $\mathcal{O}(n^3)$ many variables $\Rightarrow \binom{n^3}{2}$ many possible pairs $\Rightarrow \psi$ is at most of length $\mathcal{O}(n^6)$
- We can write the formula down in polynomial space

PSPACE completeness

Theorem

2-player competitive dominoes is PSPACE-complete

To show:

 \in PSPACE: Lemma 4

hardness: This section

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

 $\mathsf{BIPARTITE-GG} \leq_p 2P \cdot COMP \cdot DOM \tag{1}$

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

BIPARTITE-GG
$$\leq_{p} 2P$$
-COMP-DOM (1)

Bipartite Generalized geography (Bipart-GG):1:

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

BIPARTITE-GG
$$\leq_{p} 2P$$
-COMP-DOM (1)

Bipartite Generalized geography (Bipart-GG):¹:

• given: $G = A \bigcup B$, directed, bipartite: $E \subseteq A \times B$; $a^* \in A$

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

BIPARTITE-GG
$$\leq_{p} 2P$$
-COMP-DOM (1)

Bipartite Generalized geography (Bipart-GG):¹:

- given: $G = A \bigcup B$, directed, bipartite: $E \subseteq A \times B$; $a^* \in A$
- 2 players alternate moving token along edges, to unvisited nodes

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

BIPARTITE-GG
$$\leq_{p} 2P$$
-COMP-DOM (1)

Bipartite Generalized geography (Bipart-GG):¹:

- given: $G = A \bigcup B$, directed, bipartite: $E \subseteq A \times B$; $a^* \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a*

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

BIPARTITE-GG
$$\leq_{p} 2P$$
-COMP-DOM (1)

Bipartite Generalized geography (Bipart-GG):1:

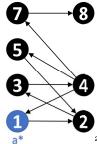
- given: $G = A \bigcup B$, directed, bipartite: $E \subseteq A \times B$; $a^* \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a*
- Player who cannot move loses

¹Bipart-GG: PSPACE hardness proven by Lichtenstein & Sipser via QBF [LS80]

Bipart-GG: example

Rules

- given: $G = A \bigcup B$, directed, bipartite: $E \subseteq A \times B$; $a^* \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a*
- Player who cannot move loses



ETHzürich

Given $G = A \bigcup B$, $\forall (a, b) \in E$ $(b, a) \in E$:

Edge (a,b) \longrightarrow Domino [a|b] to player A

Edge (b,a) \longrightarrow Domino [a|b] to player B

(Direction encoded by who gets which domino)

ETHzürich

Given $G = A \bigcup B$, $\forall (a, b) \in E$ $(b, a) \in E$:

Edge (a,b) \longrightarrow Domino [a|b] to player A

Edge (b,a) \longrightarrow Domino [a|b] to player B

(Direction encoded by who gets which domino)

 \hookrightarrow Differences to care about:

BIPARTITE-GG [^]= 2p-COMP-DOM

- Blocking opponent (cannot move token)
 - One-sided chain

Start at a*

 $\stackrel{\wedge}{=}$

- Blocking opponent or
- getting rid of all dominoes
- Two-sided chain (queue)
- A starts with any of his $\overline{}$

dominoes

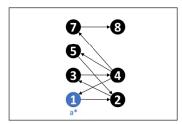
Eliminate Win by Getting Rid

Nonsense domino [#|#] to both players:

- can only be connected to other player's nonsense [#|#]
- nobody would play *nonsense* in first turn:

 \Rightarrow nobody runs out of dominoes \Rightarrow only win by blocking opponent

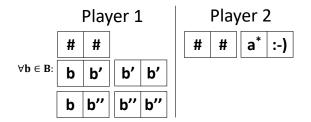
Make Chain One-Sided



Player 2 starts in domino

• Give Player 2 *start-domino* [*a*^{*}|:-)] (":-)" unique)

Force Start-Domino



• Give Player 1 garbage dominoes $\forall b \in B : [b,b'], [b',b'], [b,b''], [b'',b'']$

Lemma: this domino distribution enforces P2 to play start domino first ²

²Assuming P2 makes first move.

Lemma: this domino distribution enforces P2 to play start domino first ²

Proof.

P2 cannot start with nonsense domino (see before).

P2 cannot start with an edge Domino:

Case 1: P2 starts with [a|b], $a \neq a^*$.

Case 2: P2 starts with [a|b], $a = a^*$.

²Assuming P2 makes first move.

winning strategy in Bipartite-GG

winning strategy in (transformed) domino

 \Leftrightarrow

Proof sketch.

winning strategy in Bipartite-GG \iff (transformed) domino

Proof sketch.

"⇒" winning strategy in bipartite-GG. ⇒ edges $\stackrel{\wedge}{=}$ dominoes ⇒ strategy in domino game

winning strategy in Bipartite-GG \iff winning strategy in (transformed) domino

Proof sketch.

- "⇒" winning strategy in bipartite-GG. ⇒ edges $\stackrel{\wedge}{=}$ dominoes ⇒ strategy in domino game
- " \Leftarrow " P1 winning strategy in dominoes \Rightarrow dominoes $\stackrel{\wedge}{=}$ edges \Rightarrow strategy bipartite GG

winning strategy in Bipartite-GG \iff winning strategy in (transformed) domino

Proof sketch.

- "⇒" winning strategy in bipartite-GG. ⇒ edges $\stackrel{\wedge}{=}$ dominoes ⇒ strategy in domino game
- " \Leftarrow " P1 winning strategy in dominoes \Rightarrow dominoes $\stackrel{\wedge}{=}$ edges \Rightarrow strategy bipartite GG

Polynomial time 🗸

BIPARTITE-GG
$$\leq_p$$
 2P-COMP-DOM

Corollary

p-player cooperative dominoes is NP-complete for any fixed $p \ge 2$

- \in *NP*: certificate
- NP-hard: p-player can simulate any 2-player game

Corollary

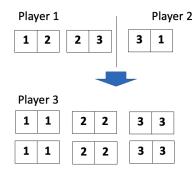
p-player competitive dominoes is PSPACE-complete for any fixed $p \ge 2$

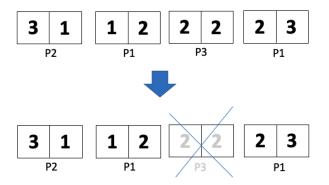
- \in *PSPACE* as in Lemma 4
- PSPACE-hard: p-player can simulate any 2-player game

ETHzürich

- p-player can simulate any 2-player game by introducing p-2 "null" players
- give each null player a domino [*a* | *a*] for each face *a* that appears in the set of dominos of player 1 and 2

Example (p = 3)





3-player game corresponds to 2-player game

Conclusion

- Determined complexity of domino game under different variants
- Single-Player is easy (in P)
- All other variants are intractable
- Caveats:
 - No Passing
 - Uneven number of dominoes
 - Multisets
- Can the model be extended?

ETH zürich

Appendix: GG is PSPACE hard (and complete)

GO is Polynominal-Space Hard

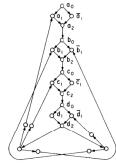


FIGURE 1

representing universally quantified variables), and the other player chooses which path to take through 3-diamonds. After all diamonds have been traversed, the Ψ -player chooses a clause, and the \exists -player then chooses a variable from that clause. \exists then wms immediately if the chosen variable satisfies the clause; otherwise, Ψ wins on the next move. It follows easily that \exists wms if T is true, and we leave the details to the reader. \Box

395

Bibliography

- - J-C Billaut, Federico Della Croce, Fabio Salassa, and Vincent T'kindt, *No-idle, no-wait: when shop scheduling meets dominoes, eulerian paths and hamiltonian paths*, Journal of Scheduling **22** (2019), no. 1, 59–68.
- David Lichtenstein and Michael Sipser, Go is polynomial-space hard, Journal of the ACM (JACM) 27 (1980), no. 2, 393–401.
- Michael Sipser, Introduction to the theory of computation, 314.