

Playing Dominoes Is Hard, Except by Yourself

Erik D. Demaine, Fermi Ma, Erik Waingarten

Presentation by Chio Ge, Tassilo Schwarz

Why should I care?

- Winning strategy: complexity
- Useful for reductions
- Reduction from instances of job scheduling problem ${ }^{1}$

[^0]
GlHzürich

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

\[

\]

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$
Player 2		Player 1	

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

Domino Game: Classical Version

- Domino set: $\{(a, b) \mid a \leq b \wedge a, b \in\{1, \ldots, 7\}\}$
- Evenly distributed among players

- Players take turn building a valid chain

- Winner:
- Player, first out of dominoes
- Opponent stuck

Domino Game: Generalized Version

Instance of Domino Game:

- multiset of n dominoes
- arbitrary distribution among players

Winner:

- Rid of all dominoes
- Opponent stuck

Domino Game: Generalized Version

Instance of Domino Game:

- multiset of n dominoes
- arbitrary distribution among players

Winner:

- Rid of all dominoes
- Opponent stuck

Goal

Complexity to decide: Given a Dominoes instance, does a winning strategy exist?

Variants of Dominoes

Cooperative Dominoes
$p-C O O P-D O M=\{\langle$ Instance of Dominoes $\rangle \mid$ All players can help P1 win the game $\}$

- $p \geq 1$ players
- Can all players help Player 1 win the game?

Variants of Dominoes

Cooperative Dominoes
p-COOP-DOM $=\{\langle$ Instance of Dominoes $\rangle \mid$ All players can help P1 win the game $\}$

- $p \geq 1$ players
- Can all players help Player 1 win the game?

Competitive Dominoes
p-COMP-DOM $=\{$ 〈Instance of Dominoes $\rangle \mid$ P1 has a winning strategy $\}$

- $p \geq 2$ players
- Does player 1 have a winning strategy?

Variants of Dominoes

Cooperative Dominoes
p-COOP-DOM $=\{\langle$ Instance of Dominoes $\rangle \mid$ All players can help P1 win the game $\}$

- $p \geq 1$ players
- Can all players help Player 1 win the game?

Competitive Dominoes
p-COMP-DOM $=\{$ 〈Instance of Dominoes $\rangle \mid \mathrm{P} 1$ has a winning strategy $\}$

- $p \geq 2$ players
- Does player 1 have a winning strategy?

Perfect information: all dominoes visible
Player 1 starts.

We will show

1. One-player dominoes is in P
2. Two-player cooperative dominoes is NP-complete
3. Two-player competitive dominoes is PSPACE-complete
4. (p-player cooperative dominoes is NP-complete)
5. (p-player competitive dominoes is PSPACE-complete)

Theorem

One-player dominoes $\in P$
Proof.

$$
\text { One-player dominoes } \leq_{p} \text { Eulerian Path }{ }^{1}
$$

Numbers on dominoes \rightarrow Vertices
Dominoes \rightarrow Edges

Eulerian path ${ }^{1}$ exists in $G \Longleftrightarrow$ valid domino chain exists

[^1]
AlHzürich

Cooperative Dominoes

2 players; can all players help Player 1 win the game?

Theorem

2-player cooperative dominoes (2P-COOP-DOM) is NP-complete.

Proof.

1) $2 \mathrm{P}-\mathrm{COOP}-\mathrm{DOM} \in N P:$

Given a move sequence, verify whether Player 1 wins.
2) 2 P-COOP-DOM is NP-hard:

Reduction from Hamilton Path Problem (HP)

$H P \leq_{p} 2 P-C O O P-D O M$

Given (connected) graph $G=(V, E)$, construct dominoes instance:

$$
T_{1}=\{\{i, i\} \mid i \in V\} \text { and } T_{2}=\{\{i, j\} \mid(i, j) \in E\} \cup\{\{*, *\}\}
$$

Fig. 1. Reduction from Hamiltonian path to 2-player cooperative dominoes

Fig. 2. Hamiltonian path represented as domino chain

Edge Case

$$
T_{1}=\{\{i, i\} \mid i \in V\} \text { and } T_{2}=\{\{i, j\} \mid(i, j) \in E\} \cup\{\{*, *\}\}
$$

Player 1			Player 2	
$\mathbf{1}$ $\mathbf{1}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{1}$ $\mathbf{2}$				

G is connected so there are at least $|V|-1$ edges \Rightarrow Player 2 cannot get rid of his dominoes before Player 1 with dummy domino

GlHzürich

Competitive Dominoes

2 players; does player 1 have a winning strategy?

Theorem

2-player competitive dominoes (2P-COMP-DOM) is in PSPACE.

Proof.
Convert into instance of the Formula Game Problem

Formula Game

Given quantified Boolean formula in prenex normal form

$$
\phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots Q x_{k}[\psi]
$$

and two Players E, A
Definition (Formula Game (associated with ϕ))
Player E (\exists) and Player A (\forall) take turns selecting variables x_{1}, \ldots, x_{k} If ψ evaluates to TRUE, E wins. Else, A Wins.

Formula Game

FORMULA-GAME $=\{\langle\phi\rangle \mid$ Player E has a winning strategy in the formula game associated with $\phi\}$

Example

$$
\exists x_{1} \forall x_{2} \exists x_{3}\left[\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3}\right)\right]
$$

Player E has a winning strategy: Set $x_{1}=1$ and $x_{3}=\neg x_{2}$

Formula Game

Theorem

FORMULA-GAME is in PSPACE

Proof (Sketch).

Recursively check for all variables if subformula has a winning strategy by trying out all assignments. Only needs to save one possible assignment at a time. ${ }^{1} \quad \square$

[^2]$2 P-C O M P-D O M \leq{ }_{p}$ FORMULA-GAME
Every instance of dominoes can be transformed into a formula game problem in PSPACE.

Define variables $X_{i, j, k, l}$ representing i-th domino, placed in j-th direction, at k-th position at the l-th turn $\left(\mathcal{O}\left(n^{3}\right)\right.$ many variables).

- Generate $\psi=\left(F_{1} \wedge F_{2} \wedge F_{3}\right) \vee \neg F_{4}$ which is satisfied iff Player 1 wins a valid game OR if Player 2 makes a wrong move.
F1: Satisfied iff Player 1 moves correctly.
F2: Satisfied iff domino chain is correct.
F3: Satisfied iff Player 1 won.
F4: Satisfied iff Player 2 moves correctly.

EHIzürich

Formula Game: example

Player 1			Player 2	
$\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{3}$				

Polynomial Space?

- All constraints/checks in ϕ consist of one variable or a pair of variables
- $\mathcal{O}\left(n^{3}\right)$ many variables $\Rightarrow\binom{n^{3}}{2}$ many possible pairs $\Rightarrow \psi$ is at most of length $\mathcal{O}\left(n^{6}\right)$
- We can write the formula down in polynomial space

PSPACE completeness

Theorem

2-player competitive dominoes is PSPACE-complete

To show:
\in PSPACE: Lemma 4
hardness: This section

PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P-C O M P-D O M \tag{1}
\end{equation*}
$$

[^3]
PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P-C O M P-D O M \tag{1}
\end{equation*}
$$

Bipartite Generalized geography (Bipart-GG): ${ }^{1}$:
${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P \text {-COMP-DOM } \tag{1}
\end{equation*}
$$

Bipartite Generalized geography (Bipart-GG): ${ }^{1}$:

- given: $G=A \bigcup \dot{\cup} B$, directed, bipartite: $E \subseteq A \times B ; a^{*} \in A$

[^4]
PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P \text {-COMP-DOM } \tag{1}
\end{equation*}
$$

Bipartite Generalized geography (Bipart-GG): ${ }^{1}$:

- given: $G=A \bigcup \dot{\cup} B$, directed, bipartite: $E \subseteq A \times B ; a^{*} \in A$
- 2 players alternate moving token along edges, to unvisited nodes
${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P-C O M P-D O M \tag{1}
\end{equation*}
$$

Bipartite Generalized geography (Bipart-GG): ${ }^{1}$:

- given: $G=A \cup \dot{\cup} B$, directed, bipartite: $E \subseteq A \times B ; a^{*} \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a^{*}

[^5]
AlHzürich

PSPACE hardness

Theorem

2-player competitive dominoes (2P-COMP-DOM) is PSPACE-hard

$$
\begin{equation*}
\text { BIPARTITE-GG } \leq_{p} 2 P \text {-COMP-DOM } \tag{1}
\end{equation*}
$$

Bipartite Generalized geography (Bipart-GG): ${ }^{1}$:

- given: $G=A \cup \dot{U} B$, directed, bipartite: $E \subseteq A \times B ; a^{*} \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a^{*}
- Player who cannot move loses

[^6]
AlHzürich

Bipart-GG: example

Rules

- given: $G=A \cup \dot{\cup} B$, directed, bipartite: $E \subseteq A \times B ; a^{*} \in A$
- 2 players alternate moving token along edges, to unvisited nodes
- Start: Player A at vertex a^{*}
- Player who cannot move loses

AlHzürich

Given $G=A \dot{U} B, \quad \forall(a, b) \in E \quad(b, a) \in E:$
Edge (a,b) \longrightarrow Domino [a|b] to player A
Edge (b,a) \longrightarrow Domino [a|b] to player B
(Direction encoded by who gets which domino)

Given $G=A \dot{\cup} B, \quad \forall(a, b) \in E \quad(b, a) \in E$:
Edge (a,b) \longrightarrow Domino [a|b] to player A
Edge (b,a) \longrightarrow Domino [a|b] to player B
(Direction encoded by who gets which domino)
\hookrightarrow Differences to care about:

$$
\left.\begin{array}{rl}
\text { BIPARTITE-GG } & \hat{} \text { 2p-COMP-DOM } \\
\text { nnot move token) } & \hat{=} \text { Blocking opponent or } \\
\text { getting rid of all dominoes }
\end{array}\right)
$$

Eliminate Win by Getting Rid

Nonsense domino [\#|\#] to both players:

- can only be connected to other player's nonsense [\#|\#]
- nobody would play nonsense in first turn:
\Rightarrow nobody runs out of dominoes \Rightarrow only win by blocking opponent

AlHzürich

Make Chain One-Sided

Player 2 starts in domino

- Give Player 2 start-domino [a* : :-)] (":-)" unique)

$$
\begin{array}{l|l}
\text { Player } 1 & \text { Player } 2
\end{array}
$$

Force Start-Domino

- Give Player 1 garbage dominoes $\forall b \in B:\left[b, \mathrm{~b}^{\prime}\right],\left[\mathrm{b}^{\prime}, \mathrm{b}^{\prime}\right],\left[\mathrm{b}, \mathrm{b}^{\prime \prime}\right],\left[\mathrm{b}{ }^{\prime}, \mathrm{b}^{\prime \prime}\right]$

Lemma: this domino distribution enforces P2 to play start domino first ${ }^{2}$

[^7]Lemma: this domino distribution enforces P2 to play start domino first ${ }^{2}$

Proof.

P2 cannot start with nonsense domino (see before).
P2 cannot start with an edge Domino:
Case 1: P2 starts with $[\mathrm{a} \mid \mathrm{b}], a \neq \mathrm{a}^{*}$.

Case 2: P2 starts with [a|b], $a=a^{*}$.
\square

[^8]
PSPACE hardness

winning strategy in Bipartite-GG
\Longleftrightarrow
winning strategy in (transformed) domino

Proof sketch.

PSPACE hardness

Proof sketch.
$" \Rightarrow$ " winning strategy in bipartite-GG. \Rightarrow edges $\hat{=}$ dominoes \Rightarrow strategy in domino game

PSPACE hardness

winning strategy in Bipartite-GG winning strategy in (transformed) domino

Proof sketch.
$" \Rightarrow$ " winning strategy in bipartite-GG. \Rightarrow edges $\hat{=}$ dominoes \Rightarrow strategy in domino game
$" \Leftarrow "$ P1 winning strategy in dominoes \Rightarrow dominoes $\hat{=}$ edges \Rightarrow strategy bipartite GG

PSPACE hardness

winning strategy in Bipartite-GG winning strategy in (transformed) domino

Proof sketch.
$" \Rightarrow$ " winning strategy in bipartite-GG. \Rightarrow edges $\hat{=}$ dominoes \Rightarrow strategy in domino game
$" \Leftarrow "$ P1 winning strategy in dominoes \Rightarrow dominoes $\hat{=}$ edges \Rightarrow strategy bipartite GG

Polynomial time

BIPARTITE-GG \leq_{p} 2P-COMP-DOM

AlHzürich

Corollary

p-player cooperative dominoes is NP-complete for any fixed $p \geq 2$

- $\in N P$: certificate
- NP-hard: p-player can simulate any 2-player game

Corollary

p-player competitive dominoes is PSPACE-complete for any fixed $p \geq 2$

- \in PSPACE as in Lemma 4
- PSPACE-hard: p-player can simulate any 2-player game
- p-player can simulate any 2-player game by introducing p-2 "null" players
- give each null player a domino $[a \mid a]$ for each face a that appears in the set of dominos of player 1 and 2

Example ($\mathrm{p}=3$)
Player 1

Player 3

3-player game corresponds to 2-player game

Conclusion

- Determined complexity of domino game under different variants
- Single-Player is easy (in P)
- All other variants are intractable
- Caveats:
- No Passing
- Uneven number of dominoes
- Multisets
- Can the model be extended?

Appendix: GG is PSPACE hard (and complete)

GO is Polynominal-Space Hard

Figure 1
representing universally quantified variables), and the other player chooses which path to take through \exists-diamonds. After all diamonds have been traversed, the \forall-player chooses a clause, and the \exists-player then chooses a variable from that clause. \exists then wins immediately if the chosen variable satisfies the clause; otherwise, \forall wins on the next move. It follows easily that \exists wins if ${ }^{7} B$ is true, and we leave the details to the reader.

Figure: From [LS80]

Bibliography

J-C Billaut, Federico Della Croce, Fabio Salassa, and Vincent T'kindt, No-idle, no-wait: when shop scheduling meets dominoes, eulerian paths and hamiltonian paths, Journal of Scheduling 22 (2019), no. 1, 59-68.
國 David Lichtenstein and Michael Sipser, Go is polynomial-space hard, Journal of the ACM (JACM) 27 (1980), no. 2, 393-401.
R Michael Sipser, Introduction to the theory of computation, 314.

[^0]: ${ }^{1}$ two-machine no-idle/no-wait shop scheduling [BDCST19]

[^1]: ${ }^{1}$ allowing for revisiting vertices

[^2]: ${ }^{1} \in$ PSPACE proven by Sipser via QBF [Sip97]

[^3]: ${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

[^4]: ${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

[^5]: ${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

[^6]: ${ }^{1}$ Bipart-GG: PSPACE hardness proven by Lichtenstein \& Sipser via QBF [LS80]

[^7]: ${ }^{2}$ Assuming P2 makes first move.

[^8]: ${ }^{2}$ Assuming P2 makes first move.

