

Random matchings in study-design: A graph-theoretical approach

Tassilo Schwarz Center for Law and Economics, ETH Zurich

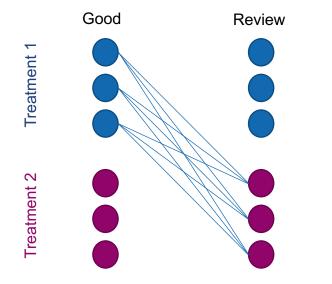
Agenda

- 1. Motivating example
- 2. Translating to graph theory
- 3. The Issue: Why simple approaches fail
- 4. A very special case: k-partite, k-regular graphs
- 5. Outlook & Discussion

Motivating example: A two-phase experiment

- Phase 1:
 - Participants get partitioned into k treatment groups
 - Each participant produces some good
 - (For example, condition under which participants produce good could vary between treatments)
- Phase 2:
 - Goods get peer-reviewed by other participants => need to find a matching
 - Want to randomize: Every good-reviewer combination should be equally likely
 - (There may be some potential confounding factors, e.g. between 1st participant in group A and 1st participant in group B)
- Possible additional constraints:
 - No good is reviewed by participants from the same treatment group
 - Multiple reviewers per good
 - Multiple reviewers should be equally spread among treatment groups

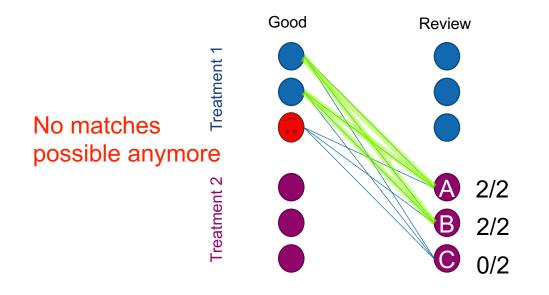
Translating to graph theory



Constraints:

- No good is reviewed by participants from the same treatment group
- Two different reviewers per good, each reviewer reviews two different goods

The issue: Why simple approaches fail



=> Use flow graph in deterministic case

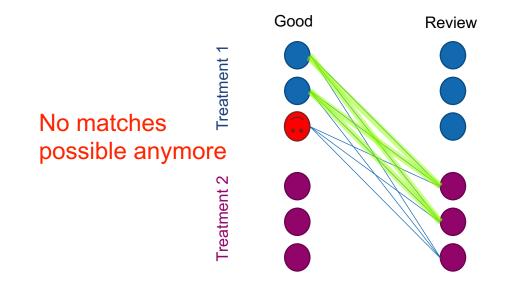
Constraints:

- No good is reviewed by participants from the same treatment group
- Two different reviewers per good, each reviewer reviews two different goods

Algorithm, design attempt:

- 1: Select Good:
 - Select group g at random
 - Select good x of g at random
- 2: Select Reviewer:
 - Select group h at random (h \neq g)
 - Select reviewer y of h at random
 - If reviewer has maximum degree, goto 2
- Match (x,y)
- Recurse until eveyone is matched

The issue: Why simple approaches fail

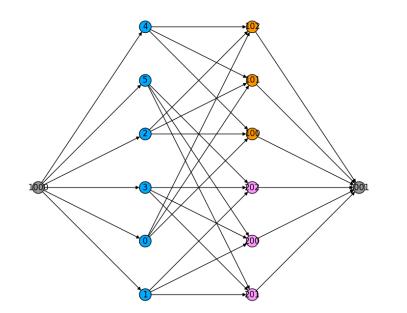


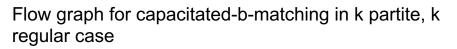
Results from complexity theory

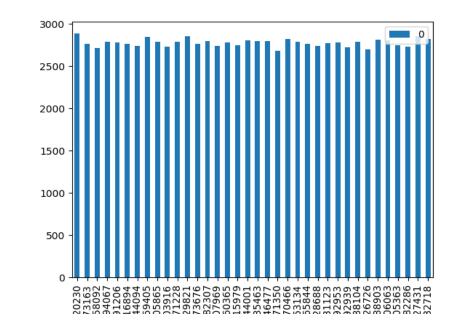
- Intuitively: Sampling uniformly connected to counting (sampling with $p = \frac{1}{M} =>$ sufficiently many samples gives $\approx M$)
- Exact counting in bipartite case: #P-complete (Valiant 1979). Solved? Call Clay institute to get 1.000.000\$
 Good news:
- Proven: Almost uniform sampling and approximately counting interreducible (Jerrum, Valiant and Vazirani 1986)
- Good approximations for counting in bipartite graphs (Jerrum, Sinclair and Vigoda 2004)

The very special case: Solution for k-partite, k-regular

- Classical fix: Flow graphs.
- But: Not randomized
- For highly structured cases, can introduce randomness by shuffeling nodes







Testing n=100.000 times. Each of the 36 possible perfect matchings is equally likeley

Solved, for this case

Outlook & Discussion

- More general cases?
- Studies?
- Possible further applications?
 - Entry-level labour markets (Roth et al. 1990)
 - Problem: Not uniformly random. Some matches occur even with probability p=0 (Ma 1996)

References

- Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8(2):189– 201, 1979.
- Ma 1996: Jinpeng Ma. On randomized matching mechanisms. Economic Theory, 8(2):377–381, 1996.
- Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, July 2004.
- Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.
- Roth et al. 1990: Alvin E Roth and John H Vande Vate. Random paths to stability in two-sided matching. Econometrica: Journal of the Econometric Society, pages 1475–1480,1990.
- Extensive bibliography for matchings and market design: <u>https://stanford.edu/~alroth/matchbib.html</u>

